Advertisements
Advertisements
प्रश्न
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
उत्तर
We know that rationalization factor for `3sqrt2 + 2sqrt3` and `sqrt3 - sqrt2` are `3sqrt2 - 2sqrt3` and `sqrt3 + sqrt2`respectively. We will multiply numerator and denominator of the given expression `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3)` and `sqrt12/(sqrt3 - sqrt2)` by `3sqrt2 - 2sqrt3` and `sqrt3 + sqrt2` respectively to get
`(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) xx (3sqrt2 - 2sqrt3)/(3sqrt2 - 2sqrt3) + sqrt12/(sqrt3 - sqrt2) xx (sqrt3 + sqrt2)/(sqrt3 + sqrt2) = ((3sqrt2)^2 + (2sqrt3)^2 - 2 xx 3sqrt2 xx 2sqrt3)/((3sqrt2)^2 - (2sqrt3)^2) + (sqrt36 + sqrt24)/((sqrt3)^2 - (sqrt2)^2)`
`= (18 + 12 - 12sqrt6)/(18 - 12) + (6 + sqrt24)/(3 - 2)`
`= (30 - 12sqrt6 + 36 + 12sqrt6)/6`
`= 66/6`
= 11
Hence the given expression is simplified to 11
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Rationalise the denominator of each of the following
`3/sqrt5`
Rationalise the denominator of each of the following
`1/sqrt12`
Rationalise the denominator of the following
`sqrt2/sqrt5`
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.