Advertisements
Advertisements
प्रश्न
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
उत्तर
We are asked to simplify`sqrt(3 +2sqrt2)`. It can be written in the form `(a+b)^2 = a^2 +b^2 +2ab` as
`sqrt(3 +2sqrt2) = sqrt(2+1+2xx 1xx sqrt2)`
` = sqrt((sqrt2)^2 + (1)^2 + 2 xx 1 xx sqrt2)`
` = sqrt((sqrt2+1))^2`
` = sqrt2 +1`
Hence the value of given expression is ` sqrt2 +1`.
APPEARS IN
संबंधित प्रश्न
Represent `sqrt9.3` on the number line.
Simplify of the following:
`root(3)4 xx root(3)16`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`