Advertisements
Advertisements
प्रश्न
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`
उत्तर
`(8^(1/3) xx 16^(1/3))/(32^(- 1/3)) = ((2^3)^(1/3) xx (2^4)^(1/3))/((2^5)^(-1/3))` ...[∵ (am)n = amn]
= `(2^(3 xx 1/3) xx 2^(4 xx 1/3))/(2^(5 xx -1/3))`
= `(2^(3/3 + 4/3))/(2^(-5/3))` ...`[∵ a^m/a^n = a^(m - n)]`
= `2^(7/3)/(2^(-5/3))`
= `2^(7/3 + 5/3)`
= `2^(12/3)`
= 24
= 16
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Classify the following number as rational or irrational:
`1/sqrt2`
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`