Advertisements
Advertisements
प्रश्न
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
उत्तर
We know that rationalization factor for `3sqrt2 +2sqrt3` and `sqrt3-sqrt2`are `3sqrt2 - 2sqrt3`and `sqrt3 +sqrt2`respectively. We will multiply numerator and denominator of the given expression `(3sqrt2 -2sqrt3)/ (3sqrt2 +2sqrt3)` and `sqrt12/(sqrt3-sqrt2)`by `3sqrt2-2sqrt3`and `sqrt3 +sqrt2`respectively, to get
`(3sqrt2 -2sqrt3)/ (3sqrt2 +2sqrt3) xx (3sqrt2 -2sqrt3)/ (3sqrt2 -2sqrt3) +sqrt12/(sqrt3-sqrt2) xx (sqrt3 +sqrt2)/(sqrt3 +sqrt2) =((3sqrt2)^2+(2sqrt3)^2 - 2xx 3 sqrt2 xx 2sqrt3)/((3sqrt2)^2 -( 2sqrt3)^2 ) +(sqrt36+sqrt24)/((sqrt3)^2-(sqrt2)^2)`
`= (18+12-12sqrt6)/(18-12) +(6+sqrt24)/(3-2)`
`= (30-12sqrt6 +36 +12sqrt6)/6`
`=66/6`
`=11`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following:
`1/sqrt7`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
Classify the following number as rational or irrational:
`1/sqrt2`
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`