Advertisements
Advertisements
प्रश्न
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
उत्तर
We know that rationalization factor for`3+sqrt5+`and `3-sqrt5`are`3-sqrt5` and `3+sqrt5`respectively. We will multiply numerator and denominator of the given expression `(7+3sqrt5)/(3+sqrt5)`and `(7-3sqrt5)/(3- sqrt5)` by` 3-sqrt5` and `3+sqrt5` respectively, to get
`(7+3sqrt5)/(3+ sqrt5) xx (3-sqrt5)/(3- sqrt5) - (7-3sqrt5)/(3- sqrt5) xx (3+sqrt5)/(3+ sqrt5) = (7xx3-7xxsqrt5+9xxsqrt5-3xx(sqrt5)^2)/ ((3)^2 - (sqrt5)^2) -(7xx3+7xxsqrt5-9xxsqrt5-3xx(sqrt5)^2)/ ((3)^2 - (sqrt5)^2) `
`=(21-7sqrt5+9sqrt5 - 3xx5)/(9-5) - (21+7sqrt5+9sqrt5 - 3xx5)/(9-5) `
`=(21+2sqrt5-15)/ 4 - (21-2sqrt5-15) /4`
`= (6+2sqrt5-6+2sqrt5)`
` = (4sqrt5 )/4`
` = sqrt5`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
The rationalisation factor of \[2 + \sqrt{3}\] is
Value of (256)0.16 × (256)0.09 is ______.
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.