Advertisements
Advertisements
प्रश्न
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
उत्तर
We know that rationalization factor for`3+sqrt5+`and `3-sqrt5`are`3-sqrt5` and `3+sqrt5`respectively. We will multiply numerator and denominator of the given expression `(7+3sqrt5)/(3+sqrt5)`and `(7-3sqrt5)/(3- sqrt5)` by` 3-sqrt5` and `3+sqrt5` respectively, to get
`(7+3sqrt5)/(3+ sqrt5) xx (3-sqrt5)/(3- sqrt5) - (7-3sqrt5)/(3- sqrt5) xx (3+sqrt5)/(3+ sqrt5) = (7xx3-7xxsqrt5+9xxsqrt5-3xx(sqrt5)^2)/ ((3)^2 - (sqrt5)^2) -(7xx3+7xxsqrt5-9xxsqrt5-3xx(sqrt5)^2)/ ((3)^2 - (sqrt5)^2) `
`=(21-7sqrt5+9sqrt5 - 3xx5)/(9-5) - (21+7sqrt5+9sqrt5 - 3xx5)/(9-5) `
`=(21+2sqrt5-15)/ 4 - (21-2sqrt5-15) /4`
`= (6+2sqrt5-6+2sqrt5)`
` = (4sqrt5 )/4`
` = sqrt5`
APPEARS IN
संबंधित प्रश्न
Represent `sqrt9.3` on the number line.
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
Write the reciprocal of \[5 + \sqrt{2}\].
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
`1/(sqrt(9) - sqrt(8))` is equal to ______.
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`