Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
उत्तर
Let `E = (2 + sqrt(3))/(2 - sqrt(3))`
For rationalising the denominator, multiplying numerator and denominator by `2 + sqrt(3)`,
`E = (2 + sqrt(3))/(2 - sqrt(3)) xx (2 + sqrt(3))/(2 + sqrt(3))`
= `(2 + sqrt(3))^2/((2)^2 - (sqrt(3)^2)`
= `(2^2 + (sqrt(3))^2 + 2 xx 2 xx sqrt(3))/(4 - 3)` ...[Using identity, (a – b)(a + b) = a2 – b2]
= `4 + 3 + 4sqrt(3)` ...[Using identity (a + b)2 = a2 + 2b + b2]
= `7 + 4sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
The rationalisation factor of \[\sqrt{3}\] is
Classify the following number as rational or irrational:
`1/sqrt2`
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`