Advertisements
Advertisements
प्रश्न
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`
उत्तर
Let `E = (sqrt(10) - sqrt(5))/2`
= `(sqrt(5) sqrt(2) - sqrt(5))/2`
= `(sqrt(5)(sqrt(2) - 1))/2` ...`[∵ sqrt(10) = sqrt(2) sqrt(5)]`
= `(2.236(1.414 - 1))/2`
= 1.118 × 0.414
= 0.46285 ≅ 0.463
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Simplify of the following:
`root(3)4 xx root(3)16`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Simplify the following:
`4sqrt12 xx 7sqrt6`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`