Advertisements
Advertisements
प्रश्न
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
उत्तर
Let `E = sqrt(2)/(2 + sqrt(2)`
For rationalising the denominator, multiplying numerator and denominator by `2 - sqrt(2)`, we get
= `sqrt(2)/(2 + sqrt(2)) xx (2 - sqrt(2))/(2 - sqrt(2))`
= `(sqrt(2)(2 - sqrt(2)))/((2)^2 - (sqrt(2))^2` ...[Using identity, (a – b)(a + b) = a2 – b2]
= `(sqrt(2) xx sqrt(2)(sqrt(2) - 1))/2`
= `(2(sqrt(2) - 1))/2`
= `sqrt(2) - 1` ...[Put `sqrt(2)` = 1.414]
= 1.414 – 1
= 0.414
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following:
`3/(2sqrt5)`
Express the following with rational denominator:
`1/(3 + sqrt2)`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Classify the following number as rational or irrational:
`(3+sqrt23)-sqrt23`
Classify the following number as rational or irrational:
`1/sqrt2`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`