Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`3/(2sqrt5)`
उत्तर
We know that rationalization factor for `1/sqrta`is `sqrta`. We will multiply numerator and denominator of the given expression `3/(2sqrt5)` by `sqrt5`to get
`3/(2sqrt5) xx sqrt5/sqrt5 = (3sqrt5)/(2sqrt5 xx sqrt5)`
`= (3sqrt5)/(2xx5)`
`= (3sqrt5)/10`
Hence the given expression is simplified to `(3sqrt5)/10`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
\[\sqrt{10} \times \sqrt{15}\] is equal to
`root(4)root(3)(2^2)` equals to ______.
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`