Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
उत्तर
We know that rationalization factor for `sqrt11 + sqrt7` is `sqrt11 - sqrt7`. We will multiply numerator and denominator of the given expression `(sqrt11 - sqrt7)/(sqrt11 + sqrt7)` by `sqrt11 - sqrt7` to get
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) xx (sqrt11 - sqrt7)/(sqrt11 - sqrt7) = ((sqrt11)^2 + (sqrt7)^2 - 2 xx sqrt11 xx sqrt7)/(sqrt(11)^2 - sqrt(7)^2)`
`= (11 + 7 - 2 sqrt77)/(11 - 7)`
`= (18 - 2sqrt77)/4`
`= 9/2 - 1/2 sqrt77`
On equating rational and irrational terms, we get
`a - bsqrt77 = 9/2 - 1/2 sqrt77`
Hence we get a = 9/2, b = 1/2
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(4)1250/root(4)2`
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
The rationalisation factor of \[\sqrt{3}\] is
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.