Advertisements
Advertisements
प्रश्न
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`
उत्तर
`64^(-1/3)[64^(1/3) - 64^(2/3)] = (4^3)^(-1/3)[(4^3)^(1/3) - (4^3)^(2/3)]` ...[∵ (am)n = amn]
= `4^(3 xx - 1/3) (4^(3 xx 1/3) - 4^(3 xx 2/3))`
= 4–1(4 – 42)
= `1/4(4 - 16)`
= `-12/4`
= – 3
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following:
`3/(2sqrt5)`
Rationalise the denominator of each of the following
`1/sqrt12`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
`1/(sqrt(9) - sqrt(8))` is equal to ______.
`root(4)root(3)(2^2)` equals to ______.
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`