Advertisements
Advertisements
प्रश्न
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
उत्तर
We know that `x^2 + 1/x^2 = (x +1/x)^2 - 2`. We have to find the value of `x^2 + 1/x^2`. As `x = 3 + sqrt8`
therefore
`1/x = 1/(3 + sqrt8)`
We know that rationalization factor for `3 + sqrt8` is `3 - sqrt8`. We will multiply numerator and denominator of the given expression `1/(3 = sqrt8)` by `3 - sqrt3` to get
`1/x = 1/(3 + sqrt8) xx (3 - sqrt8)/(3 -sqrt8)`
`= (3 - sqrt8)/(9 - 8)`
`= 3 - sqrt8`
Putting the vlaue of x and 1/x, we get
`x^2 + 1/x^2 = (3 + sqrt8 + 3 - sqrt8)^2 - 2`
`= (6)^2 - 2`
= 36 - 2
= 34
Hence the given expression is simplified to 34.
APPEARS IN
संबंधित प्रश्न
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Classify the following number as rational or irrational:
2π
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Rationalise the denominator of the following:
`2/(3sqrt(3)`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.