Advertisements
Advertisements
प्रश्न
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
उत्तर
We know that rationalization factor for `3 - 2sqrt2` is `3 + 2sqrt2`. We will multiply numerator and denominator of the given expression `(1 + sqrt2)/(3 - 2sqrt2)` by `3 + 2sqrt2` to get
`(1 + sqrt2)/(3 - 2sqrt2) xx (3 + 2sqrt2)/(3 + 2sqrt2) = (3 + 2 xx sqrt2 + 3 xx sqrt2 + 2 xx (sqrt2)^2)/((3)^2 - (2sqrt2)^2)`
`= (3 + 2sqrt2 + 3sqrt2 + 4)/(9 - 8)`
`= (7 + 5sqrt2)/1`
Putting te value of `sqrt2` we get
`7 + 5sqrt2 = 7 + 5(1.4142)`
= 7 + 7.071
= 14.071
Hence the given expression is simplified to 14.071
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(3)4 xx root(3)16`
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
Rationalise the denominator of the following:
`1/(sqrt7-2)`
Value of (256)0.16 × (256)0.09 is ______.
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`