Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
उत्तर
We can simplify the expression `(sqrt5 - 2)(sqrt3 - sqrt5)` as
`(sqrt5 - 2)(sqrt3 - sqrt5) = sqrt5 xx sqrt3 - sqrt5 xx sqrt5 - 2 xx sqrt3 + 2 xx sqrt5`
`= sqrt15 - sqrt(5 xx 5) - 2sqrt3 + 2sqrt5`
`=sqrt15 - (5^2)^(1/2) - 2sqrt3 +2sqrt5`
`= sqrt15 - (5^2)^(1/2) - 2sqrt3 + 2sqrt5`
`= sqrt15 - 5^1 - 2sqrt3 + 2sqrt5`
Hence the value of the expression is `sqrt15 - 2sqrt3 + 2sqrt5 - 5`
APPEARS IN
संबंधित प्रश्न
Represent `sqrt9.3` on the number line.
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
The rationalisation factor of \[\sqrt{3}\] is
The rationalisation factor of \[2 + \sqrt{3}\] is
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`