Advertisements
Advertisements
प्रश्न
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
उत्तर
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7) = (4sqrt(4 xx 7) ÷ 3sqrt(7)) ÷ root(3)(7)`
= `((8sqrt(7))/(3sqrt(7))) ÷ (7)^(1/3)` ...`[∵ root(n)(a) = a^(1/n)]`
= `8/3 ÷ 7^(1/3)`
= `8/(3root(3)(7)`
APPEARS IN
संबंधित प्रश्न
Represent `sqrt9.3` on the number line.
Rationalise the denominator of each of the following
`3/sqrt5`
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`