Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
उत्तर
Let `E = (3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
For rationalising the denominator, multiplying numerator and denominator by `sqrt(5) + sqrt(3)`,
`E = (3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) xx (sqrt(5) + sqrt(3))/(sqrt(5) + sqrt(3))`
= `(3sqrt(5)(sqrt(5) + sqrt(3)) + sqrt(3)(sqrt(5) + sqrt(3)))/((sqrt(5))^2 - (sqrt(3))^2` ...[Using identity, (a + b)(a – b) = a2 – b2]
= `(15 + 3sqrt(15) + sqrt(15) + 3)/(5 - 3)`
= `(18 + 4sqrt(15))/2`
= `9 + 2sqrt(15)`
APPEARS IN
संबंधित प्रश्न
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
Write the rationalisation factor of \[\sqrt{5} - 2\].
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
Simplify:
`(1/27)^((-2)/3)`