Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
उत्तर
Let `E = (3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
For rationalising the denominator, multiplying numerator and denominator by `sqrt(5) + sqrt(3)`,
`E = (3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) xx (sqrt(5) + sqrt(3))/(sqrt(5) + sqrt(3))`
= `(3sqrt(5)(sqrt(5) + sqrt(3)) + sqrt(3)(sqrt(5) + sqrt(3)))/((sqrt(5))^2 - (sqrt(3))^2` ...[Using identity, (a + b)(a – b) = a2 – b2]
= `(15 + 3sqrt(15) + sqrt(15) + 3)/(5 - 3)`
= `(18 + 4sqrt(15))/2`
= `9 + 2sqrt(15)`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(2 + sqrt3)/3`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`