Advertisements
Advertisements
प्रश्न
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
उत्तर
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3) = 3sqrt(3) + 2sqrt(3 xx 3 xx 3) + 7/sqrt(3) xx sqrt(3)/sqrt(3)`
= `3sqrt(3) + 6sqrt(3) + (7sqrt(3))/3`
= `9sqrt(3) + (7sqrt(3))/3`
= `(27sqrt(3) + 7sqrt(3))/3`
= `(34sqrt(3))/3`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following:
`1/sqrt7`
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Rationalise the denominator of each of the following
`1/sqrt12`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`