Advertisements
Advertisements
प्रश्न
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`
उत्तर
Let `E = 6/sqrt(6)`
For rationalising the denominator, multiplying numerator and denominator by `sqrt(6)`, we get
`E = 6/sqrt(6) xx sqrt(6)/sqrt(6)`
= `(6sqrt(6))/6`
= `sqrt(2) xx sqrt(3)` ...`["Put" sqrt(2) = 1.414 "and" sqrt(3) = 1.732]`
= `1.414 xx 1.732`
= 2.449
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of each of the following
`1/sqrt12`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
\[\sqrt{10} \times \sqrt{15}\] is equal to
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`