Advertisements
Advertisements
प्रश्न
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
उत्तर
We know that rationalization factor of the denominator is `sqrt10`. We will multiply numberator and denominator of the given expression `3/sqrt10` by `sqrt10to get
`3/sqrt10 xx sqrt10/sqrt10 = (3 xx sqrt10)/(sqrt10 xx sqrt10)`
`= (3sqrt10)/10`
`= (3 xx 3.162)/10`
`= 9.486/10`
= 0.9486
The value of expression 0.9486 can be round off to three decimal places as 0.949.
Hence the given expression is simplified to 0.949.
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following:
`1/sqrt7`
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
Simplify:
`(256)^(-(4^((-3)/2))`