Advertisements
Advertisements
प्रश्न
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
उत्तर
We know that rationalization factor for `sqrt(a^2 + b^2) + a` is `sqrt(a^2 + b^2) - a`. We will multiply numerator and denominator of the given expression `b^2/(sqrt(a^2 + b^2) + a) ` by `sqrt(a^2 + b^2) - a` to get
`b^2/(sqrt(a^2 + b^2) + a) xx (sqrt(a^2 + b^2) - a)/(sqrt(a^2 + b^2) - a) = (b^2(sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2) - a^2)`
`= (b^2 (sqrt(a^2 + b^2) - a))/(a^2 + b^2 - a^2)`
`= (b^2(sqrt(a^2 + b^2) - a))/b^2`
`= sqrt(a^2 + b^2) - a`
Hence the given expression is simplified with rational denominator to `sqrt(a^2 + b^2) - a`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Rationalise the denominator of each of the following
`1/sqrt12`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Simplify:
`(256)^(-(4^((-3)/2))`