Advertisements
Advertisements
प्रश्न
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
उत्तर
We know that rationalization factor for `sqrt(a^2 + b^2) + a` is `sqrt(a^2 + b^2) - a`. We will multiply numerator and denominator of the given expression `b^2/(sqrt(a^2 + b^2) + a) ` by `sqrt(a^2 + b^2) - a` to get
`b^2/(sqrt(a^2 + b^2) + a) xx (sqrt(a^2 + b^2) - a)/(sqrt(a^2 + b^2) - a) = (b^2(sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2) - a^2)`
`= (b^2 (sqrt(a^2 + b^2) - a))/(a^2 + b^2 - a^2)`
`= (b^2(sqrt(a^2 + b^2) - a))/b^2`
`= sqrt(a^2 + b^2) - a`
Hence the given expression is simplified with rational denominator to `sqrt(a^2 + b^2) - a`
APPEARS IN
संबंधित प्रश्न
Classify the following numbers as rational or irrational:
`2-sqrt5`
Rationalise the denominator of the following:
`1/sqrt7`
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
Express the following with rational denominator:
`1/(3 + sqrt2)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Classify the following number as rational or irrational:
`(3+sqrt23)-sqrt23`
`root(4)root(3)(2^2)` equals to ______.
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`