Advertisements
Advertisements
Question
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
Solution
We know that rationalization factor for `sqrt(a^2 + b^2) + a` is `sqrt(a^2 + b^2) - a`. We will multiply numerator and denominator of the given expression `b^2/(sqrt(a^2 + b^2) + a) ` by `sqrt(a^2 + b^2) - a` to get
`b^2/(sqrt(a^2 + b^2) + a) xx (sqrt(a^2 + b^2) - a)/(sqrt(a^2 + b^2) - a) = (b^2(sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2) - a^2)`
`= (b^2 (sqrt(a^2 + b^2) - a))/(a^2 + b^2 - a^2)`
`= (b^2(sqrt(a^2 + b^2) - a))/b^2`
`= sqrt(a^2 + b^2) - a`
Hence the given expression is simplified with rational denominator to `sqrt(a^2 + b^2) - a`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of the following:
`1/sqrt7`
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Simplify the following:
`4sqrt12 xx 7sqrt6`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Simplify:
`(1/27)^((-2)/3)`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`