Advertisements
Advertisements
Question
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
Solution
We know that rationalization factor for `sqrt3 + sqrt2` is "sqrt3 - sqrt2". We will multiply numerator and denominator of the given expression `(sqrt3 - sqrt2)/(sqrt3 + sqrt2)` by `sqrt3 - sqrt2` to get
`(sqrt3 - sqrt2)/(sqrt3 + sqrt2) xx (sqrt3 - sqrt2)/(sqrt3 - sqrt2) = ((sqrt3)^2 + (sqrt2)^2 - 2 sqrt3 xx sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`= (3 + 2 - 2sqrt6)/(3 - 2)`
`= (5 - 2sqrt6)/1`
`= 5 - 2sqrt6`
Hence the given expression is simplified to `5 - 2sqrt6`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of each of the following
`3/sqrt5`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Write the reciprocal of \[5 + \sqrt{2}\].
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`