Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
उत्तर
We know that rationalization factor for `sqrt3 + sqrt2` is "sqrt3 - sqrt2". We will multiply numerator and denominator of the given expression `(sqrt3 - sqrt2)/(sqrt3 + sqrt2)` by `sqrt3 - sqrt2` to get
`(sqrt3 - sqrt2)/(sqrt3 + sqrt2) xx (sqrt3 - sqrt2)/(sqrt3 - sqrt2) = ((sqrt3)^2 + (sqrt2)^2 - 2 sqrt3 xx sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`= (3 + 2 - 2sqrt6)/(3 - 2)`
`= (5 - 2sqrt6)/1`
`= 5 - 2sqrt6`
Hence the given expression is simplified to `5 - 2sqrt6`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`2/sqrt3`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
\[\sqrt{10} \times \sqrt{15}\] is equal to
`1/(sqrt(9) - sqrt(8))` is equal to ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`