Advertisements
Advertisements
प्रश्न
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`
उत्तर
`(8^(1/3) xx 16^(1/3))/(32^(- 1/3)) = ((2^3)^(1/3) xx (2^4)^(1/3))/((2^5)^(-1/3))` ...[∵ (am)n = amn]
= `(2^(3 xx 1/3) xx 2^(4 xx 1/3))/(2^(5 xx -1/3))`
= `(2^(3/3 + 4/3))/(2^(-5/3))` ...`[∵ a^m/a^n = a^(m - n)]`
= `2^(7/3)/(2^(-5/3))`
= `2^(7/3 + 5/3)`
= `2^(12/3)`
= 24
= 16
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Simplify the following expressions:
`(sqrt3 + sqrt7)^2`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Write the rationalisation factor of \[\sqrt{5} - 2\].
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.