Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
उत्तर
We know that rationalization factor for `3 - sqrt2` is `3 + sqrt2`. We will multiply numerator and denominator of the given expression `(3 + sqrt2)/(3 - sqrt2)` by `3 + sqrt2` to get
`(3 + sqrt2)/(3 - sqrt2) xx (3 + sqrt2)/(3 + sqrt2) = ((3)^2 + (sqrt2)^2 + 2 xx 3 sqrt2)/((3)^2 - (sqrt2)^2)`
`= (9 + 2 + 6sqrt2)/(9 - 2)`
` = (11 + 6sqrt2)/7`
`= 11/7 + 6/7 sqrt2`
On equating rational and irrational terms, we get
`a + bsqrt2 = 11/7 + 6/7 sqrt2`
Hence we get a = 11/7, b = 6/7
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Classify the following number as rational or irrational:
`1/sqrt2`
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`