Advertisements
Advertisements
प्रश्न
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
पर्याय
a = 2, b =1
a = 2, b =−1
a = −2, b = 1
a = b = 1
उत्तर
Given that:`(sqrt3 -1) / (sqrt3 +1) = a -b sqrt3`
We are asked to find a and b
We know that rationalization factor for `sqrt3+1 ` is `sqrt3-1 `. We will multiply numerator and denominator of the given expression `(sqrt3-1)/(sqrt3 +1)`by, `sqrt3-1` to get
`(sqrt3-1)/(sqrt3 +1) xx (sqrt3-1)/(sqrt3 -1) = ((sqrt3)^2 +(1)^2 - 2 xx sqrt3 xx 1)/((sqrt3)^2 - (1)^2)`
`= (3+1 - 2 sqrt3)/(3-1)`
`=( 4-2sqrt3)/2`
`=2-sqrt3`
On equating rational and irrational terms, we get
`a-bsqrt3 = 2-sqrt3`
`=2 -1sqrt3`
Comparing rational and irrational part we get
`a=2,b=1`
APPEARS IN
संबंधित प्रश्न
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
The rationalisation factor of \[2 + \sqrt{3}\] is
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
`root(4)root(3)(2^2)` equals to ______.
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`