Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
उत्तर
The given number is `1/(sqrt7 - sqrt6)`
On rationalising the denominator,
⇒ `1/(sqrt7 - sqrt6) = 1/(sqrt7 - sqrt6) xx (sqrt7 + sqrt6)/(sqrt7 + sqrt6)`
We know that (a + b) (a + b) = a2 - b2
⇒ `1/(sqrt7 - sqrt6) = (sqrt7 + sqrt6)/((sqrt7)^2 - (sqrt6)^2)`
⇒ `1/(sqrt7 - sqrt6) = (sqrt7 + sqrt6)/(7 - 6)`
∴ `1/(sqrt7 - sqrt6) = sqrt7 + sqrt6`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
\[\sqrt{10} \times \sqrt{15}\] is equal to
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
`1/(sqrt(9) - sqrt(8))` is equal to ______.
`root(4)root(3)(2^2)` equals to ______.
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.