Advertisements
Advertisements
Question
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
Solution
The given number is `1/(sqrt7 - sqrt6)`
On rationalising the denominator,
⇒ `1/(sqrt7 - sqrt6) = 1/(sqrt7 - sqrt6) xx (sqrt7 + sqrt6)/(sqrt7 + sqrt6)`
We know that (a + b) (a + b) = a2 - b2
⇒ `1/(sqrt7 - sqrt6) = (sqrt7 + sqrt6)/((sqrt7)^2 - (sqrt6)^2)`
⇒ `1/(sqrt7 - sqrt6) = (sqrt7 + sqrt6)/(7 - 6)`
∴ `1/(sqrt7 - sqrt6) = sqrt7 + sqrt6`
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Write the reciprocal of \[5 + \sqrt{2}\].
\[\sqrt{10} \times \sqrt{15}\] is equal to
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.