Advertisements
Advertisements
Question
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Solution
We know that `(a - b)(a + b) = a^2 - b^2`. We will use this property to simplify the expression
`(3 + sqrt3)(3 - sqrt3)`
`∴ (3 + sqrt3)(3 - sqrt3) = (3)^2 - (sqrt3)^2`
`= 3^2 - sqrt3 xx sqrt3`
`= 3 xx 3 - sqrt(3 xx 3)`
`= 9 - (3^2)^(1/2)`
`= 9 - 3^1`
= 6
Hence the value of expression is 6.
APPEARS IN
RELATED QUESTIONS
Simplify of the following:
`root(3)4 xx root(3)16`
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
Express the following with rational denominator:
`1/(3 + sqrt2)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
Classify the following number as rational or irrational:
`(2sqrt7)/(7sqrt7)`
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`