Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
उत्तर
We know that `(a - b)(a + b) = a^2 - b^2`. We will use this property to simplify the expression
`(3 + sqrt3)(3 - sqrt3)`
`∴ (3 + sqrt3)(3 - sqrt3) = (3)^2 - (sqrt3)^2`
`= 3^2 - sqrt3 xx sqrt3`
`= 3 xx 3 - sqrt(3 xx 3)`
`= 9 - (3^2)^(1/2)`
`= 9 - 3^1`
= 6
Hence the value of expression is 6.
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of each of the following
`3/sqrt5`
Rationalise the denominator of the following:
`3/(2sqrt5)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
The rationalisation factor of \[\sqrt{3}\] is
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`