Advertisements
Advertisements
प्रश्न
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
उत्तर
We know that rationalization factor for `2 + sqrt3`, `sqrt5 - sqrt3` and `2 - sqrt5` are `2 - sqrt3`, `sqrt5 + sqrt3` and `2 + sqrt5` respectively. We will multiply numerator and denominator of the given expression `1/(2 + sqrt3), 2/(sqrt5 - sqrt3) and 1/(2 - sqrt5)` by `2 - sqrt3`, `sqrt5 + sqrt3` and `2 + sqrt5` respectively, to get
`1/(2 + sqrt3) xx (2 - sqrt3)/(2 - sqrt3) + 2/(sqrt5 - sqrt3) xx (sqrt5 + sqrt3)/(sqrt5 + sqrt3) + 1/(2 - sqrt5) xx (2 + sqrt5)/(2 + sqrt5) = (2 - sqrt3)/((2)^2 - (sqrt3)^2) + (2sqrt5 + 2sqrt3)/((sqrt5)^2 - (sqrt3)^2) + (2 - sqrt5)/((2)^2 - (sqrt5)^2)`
`= (2 - sqrt3)/1 + (2sqrt5 + 2sqrt3)/(5 - 3) + (2 + sqrt5)/(4 - 5)`
`= (2 - sqrt3)/1 + (2sqrt2 + 2sqrt3)/2 + (2 + sqrt5)/(-1)`
`= 2 - sqrt3 + sqrt5 + sqrt3 - sqrt5 - 2`
= 0
Hence the given expression is simplified to 0
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Simplify the following expressions:
`(sqrt3 + sqrt7)^2`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Classify the following number as rational or irrational:
`1/sqrt2`
Value of (256)0.16 × (256)0.09 is ______.
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`