Advertisements
Advertisements
प्रश्न
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
उत्तर
`1/(sqrta + sqrtb) xx ((sqrta - sqrtb)/(sqrta - sqrtb)) = (sqrta - sqrtb)/(a - b)`
`{1/(sqrta + sqrtb) = (sqrta - sqrtb)/(a - b)}`
= `2/1 ((sqrt5 - sqrt3)/(5 - 3)) + ((sqrt3 - sqrt2)/(3-2)) - (3/1)((sqrt5 - sqrt2)/(5 - 2))`
= `cancel2 xx (sqrt5 - sqrt3)/cancel2 + (sqrt3 - sqrt2)/1 = cancel3 xx (sqrt5 - sqrt2)/cancel3`
= `cancelsqrt5 - cancelsqrt3 + cancelsqrt3 - cancelsqrt2 - cancelsqrt5 + cancelsqrt2`
= 0
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following:
`1/sqrt7`
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Rationalise the denominator of each of the following
`1/sqrt12`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
Simplify:
`(1/27)^((-2)/3)`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`