Advertisements
Advertisements
Question
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
Solution
`1/(sqrta + sqrtb) xx ((sqrta - sqrtb)/(sqrta - sqrtb)) = (sqrta - sqrtb)/(a - b)`
`{1/(sqrta + sqrtb) = (sqrta - sqrtb)/(a - b)}`
= `2/1 ((sqrt5 - sqrt3)/(5 - 3)) + ((sqrt3 - sqrt2)/(3-2)) - (3/1)((sqrt5 - sqrt2)/(5 - 2))`
= `cancel2 xx (sqrt5 - sqrt3)/cancel2 + (sqrt3 - sqrt2)/1 = cancel3 xx (sqrt5 - sqrt2)/cancel3`
= `cancelsqrt5 - cancelsqrt3 + cancelsqrt3 - cancelsqrt2 - cancelsqrt5 + cancelsqrt2`
= 0
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Simplify the following expressions:
`(sqrt5 - sqrt3)^2`
Rationalise the denominator of the following
`sqrt2/sqrt5`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
Write the reciprocal of \[5 + \sqrt{2}\].
Write the rationalisation factor of \[\sqrt{5} - 2\].
Classify the following number as rational or irrational:
2π
`1/(sqrt(9) - sqrt(8))` is equal to ______.
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`