Advertisements
Advertisements
Question
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
Solution
We know that rationalization factor for`3+sqrt5+`and `3-sqrt5`are`3-sqrt5` and `3+sqrt5`respectively. We will multiply numerator and denominator of the given expression `(7+3sqrt5)/(3+sqrt5)`and `(7-3sqrt5)/(3- sqrt5)` by` 3-sqrt5` and `3+sqrt5` respectively, to get
`(7+3sqrt5)/(3+ sqrt5) xx (3-sqrt5)/(3- sqrt5) - (7-3sqrt5)/(3- sqrt5) xx (3+sqrt5)/(3+ sqrt5) = (7xx3-7xxsqrt5+9xxsqrt5-3xx(sqrt5)^2)/ ((3)^2 - (sqrt5)^2) -(7xx3+7xxsqrt5-9xxsqrt5-3xx(sqrt5)^2)/ ((3)^2 - (sqrt5)^2) `
`=(21-7sqrt5+9sqrt5 - 3xx5)/(9-5) - (21+7sqrt5+9sqrt5 - 3xx5)/(9-5) `
`=(21+2sqrt5-15)/ 4 - (21-2sqrt5-15) /4`
`= (6+2sqrt5-6+2sqrt5)`
` = (4sqrt5 )/4`
` = sqrt5`
APPEARS IN
RELATED QUESTIONS
Classify the following numbers as rational or irrational:
`2-sqrt5`
Simplify of the following:
`root(4)1250/root(4)2`
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
Value of `root(4)((81)^-2)` is ______.
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`