Advertisements
Advertisements
Question
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`
Solution
`4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`
⇒ `4 xx (216)^(2/3) + (256)^(3/4) + 2 xx (243)^(1/5)`
⇒ `4 xx (6^3)^(2/3) + (4^4)^(3/4) + 2 xx (3^5)^(1/5)`
By law indices (am)n = amn
⇒ 4 × (6)2 + (4)2 + 2 × (3)1
⇒ 4 × 36 + (4)3 + 2 × (3)1
= 144 + 64 + 6
= 214
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Rationalise the denominator of each of the following
`1/sqrt12`
Rationalise the denominator of the following
`sqrt2/sqrt5`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`