Advertisements
Advertisements
Question
Simplify:
`(256)^(-(4^((-3)/2))`
Solution
`(256)^(-(4^(-3/2))) = (256)^(-(4)^(-3/2)`
= `(256)^(-(2^2)^(-3/2))`
= `(256)^(-(2^(2 xx -3/2))` ...`[∵ b^((a^m)^n) = b^(a^(mn))]`
= `(256)^(-(2^-3))`
= `(2^8)^(-(1/2^3)`
= `(2^8)^(-1/8)`
= `2^(8 xx -1/8)`
= `2^-1`
= `1/2`
APPEARS IN
RELATED QUESTIONS
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Simplify of the following:
`root(3)4 xx root(3)16`
Rationalise the denominator of each of the following
`3/sqrt5`
Rationalise the denominator of the following
`sqrt2/sqrt5`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Value of (256)0.16 × (256)0.09 is ______.
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`