Advertisements
Advertisements
प्रश्न
Simplify:
`(256)^(-(4^((-3)/2))`
उत्तर
`(256)^(-(4^(-3/2))) = (256)^(-(4)^(-3/2)`
= `(256)^(-(2^2)^(-3/2))`
= `(256)^(-(2^(2 xx -3/2))` ...`[∵ b^((a^m)^n) = b^(a^(mn))]`
= `(256)^(-(2^-3))`
= `(2^8)^(-(1/2^3)`
= `(2^8)^(-1/8)`
= `2^(8 xx -1/8)`
= `2^-1`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Represent `sqrt9.3` on the number line.
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Simplify `(7 + 3sqrt5)/(3 + sqrt5) - (7 - 3sqrt5)/(3 - sqrt5)`
Write the reciprocal of \[5 + \sqrt{2}\].
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
Classify the following number as rational or irrational:
2π
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`