Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
उत्तर
We know that rationalization factor for `sqrt11 + sqrt7` is `sqrt11 - sqrt7`. We will multiply numerator and denominator of the given expression `(sqrt11 - sqrt7)/(sqrt11 + sqrt7)` by `sqrt11 - sqrt7` to get
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) xx (sqrt11 - sqrt7)/(sqrt11 - sqrt7) = ((sqrt11)^2 + (sqrt7)^2 - 2 xx sqrt11 xx sqrt7)/(sqrt(11)^2 - sqrt(7)^2)`
`= (11 + 7 - 2 sqrt77)/(11 - 7)`
`= (18 - 2sqrt77)/4`
`= 9/2 - 1/2 sqrt77`
On equating rational and irrational terms, we get
`a - bsqrt77 = 9/2 - 1/2 sqrt77`
Hence we get a = 9/2, b = 1/2
APPEARS IN
संबंधित प्रश्न
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Write the reciprocal of \[5 + \sqrt{2}\].
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.