Advertisements
Advertisements
प्रश्न
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
उत्तर
We know that rationalization factor for `2sqrt2 - sqrt3` is `2sqrt2 + sqrt3` . We will multiply numerator and denominator of the given expression `(sqrt3 + 1)/(2sqrt2 - sqrt3)` by `2sqrt2 + sqrt3` to get
`(sqrt3 + 1)/(2sqrt2 - sqrt3) xx (2sqrt2 + sqrt3)/(2sqrt2 + sqrt3) = (2xx sqrt3 xx sqrt2 + sqrt3 xx sqrt3 + 2sqrt2 + sqrt3)/((2sqrt2)^2 - (sqrt3)^2)`
` = (2sqrt(3xx2) + 3 + 2 sqrt2 + sqrt3)/(4 xx 2 - 3)`
`= (2sqrt6 + 3 + 2sqrt2 + sqrt3)/(8 - 3)`
`= (2sqrt6 + 3 + 2sqrt2 + sqrt3)/5`
`= (2sqrt6 + 3 + 2sqrt2 + sqrt3)/5`
Hence the given expression is simplified with rational denominator to `(2sqrt6 + 3 + 2sqrt2 + sqrt3)/5`
APPEARS IN
संबंधित प्रश्न
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Write the rationalisation factor of \[\sqrt{5} - 2\].
The rationalisation factor of \[\sqrt{3}\] is
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Simplify the following:
`(sqrt(3) - sqrt(2))^2`