Advertisements
Advertisements
प्रश्न
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
उत्तर
We know that rationalization factor of the denominator is `sqrt5`. We will multiply numerator and denominator of the given expression `(sqrt2 - 1)/sqrt5`by `sqrt5` to get
`(sqrt2 - 1)/sqrt5 xx sqrt5/sqrt5 = (sqrt2 xx sqrt5 - sqrt5)/(sqrt5 xx sqrt5)`
`= (sqrt10 - sqrt5)/5`
Putting the value of `sqrt10`and `sqrt5` we get
`(sqrt10 - sqrt5)/5 = (3.162 - 2.236)/5`
`= 0.926/5`
= 0.1852
The value of expression 0.1852 can be round off tp three decimal places as 0.185.
given expression is simplified to 0.185
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following:
`1/sqrt7`
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
The rationalisation factor of \[\sqrt{3}\] is
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`