Advertisements
Advertisements
प्रश्न
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
विकल्प
`sqrt(2)`
2
4
8
उत्तर
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to 2.
Explanation:
`(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12)) = (sqrt(16 xx 2) + sqrt(16 xx 3))/(sqrt(4 xx 2) + sqrt(4 xx 3))`
= `(4sqrt(2) + 4sqrt(3))/(2sqrt(2) + 2sqrt(3))`
= `(4(sqrt(2) + sqrt(3)))/(2(sqrt(2) + sqrt(3))`
= 2
APPEARS IN
संबंधित प्रश्न
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.
Simplify:
`(256)^(-(4^((-3)/2))`