Advertisements
Advertisements
प्रश्न
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
उत्तर
The given expression is `(sqrt5 - sqrt2) (sqrt5 + sqrt2)`
We know that (a + b) (a - b) = a2 - b2
⇒ `(sqrt5 - sqrt2) (sqrt5 + sqrt2) = (sqrt5)^2 - (sqrt2)^2`
⇒ `(sqrt5 - sqrt2) (sqrt5 + sqrt2) = 5 - 2`
∴ `(sqrt5 - sqrt2) (sqrt5 + sqrt2) = 3`
APPEARS IN
संबंधित प्रश्न
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`