Advertisements
Advertisements
प्रश्न
Simplify the following expression:
`(sqrt5+sqrt2)^2`
उत्तर
The given expression is `(sqrt5 + sqrt2)^2`
We know that (a + b)2 = a2 + b2 + 2ab
⇒ `(sqrt5 + sqrt2)^2 =(sqrt5)^2 + (sqrt2)^2 + 2 xx sqrt5 xx sqrt2`
⇒ `(sqrt5 + sqrt2)^2 = 5 + 2 + 2sqrt10`
∴ `(sqrt5 + sqrt2)^2 = 7 + 2sqrt10`
APPEARS IN
संबंधित प्रश्न
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
Simplify `(7 + 3sqrt5)/(3 + sqrt5) - (7 - 3sqrt5)/(3 - sqrt5)`
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`