Advertisements
Advertisements
प्रश्न
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
विकल्प
a = 2, b =1
a = 2, b =−1
a = −2, b = 1
a = b = 1
उत्तर
Given that:`(sqrt3 -1) / (sqrt3 +1) = a -b sqrt3`
We are asked to find a and b
We know that rationalization factor for `sqrt3+1 ` is `sqrt3-1 `. We will multiply numerator and denominator of the given expression `(sqrt3-1)/(sqrt3 +1)`by, `sqrt3-1` to get
`(sqrt3-1)/(sqrt3 +1) xx (sqrt3-1)/(sqrt3 -1) = ((sqrt3)^2 +(1)^2 - 2 xx sqrt3 xx 1)/((sqrt3)^2 - (1)^2)`
`= (3+1 - 2 sqrt3)/(3-1)`
`=( 4-2sqrt3)/2`
`=2-sqrt3`
On equating rational and irrational terms, we get
`a-bsqrt3 = 2-sqrt3`
`=2 -1sqrt3`
Comparing rational and irrational part we get
`a=2,b=1`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`