Advertisements
Advertisements
प्रश्न
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
उत्तर
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225) = (81)^(1/4) - 8 xx (216)^(1/3) + 15 xx (32)^(1/5) + sqrt((15)^2` ...`[∵ root(m)(a) = a^(1/m)]`
= `(3^4)^(1/4) - 8 xx (6^3)^(1/3) + 15 xx (2^5)^(1/5) + 15`
= `3^(4 xx 1/4) - 8 xx 6^(3 xx 1/3) + 15 xx 2^(5 xx 1/5) + 15` ...[∵ (am)n = amn]
= 31 – 8 × 61 + 15 × 21 + 15
= 3 – 48 + 30 + 15
= 48 – 48
= 0
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`