Advertisements
Advertisements
प्रश्न
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
उत्तर
We know that rationalization factor for `5sqrt3 - 3sqrt5` is `5sqrt3 + 3sqrt5`. We will multiply numerator and denominator of the given expression `30/(5sqrt3 - 3sqrt5)` by `5sqrt3 + 3sqrt5` to get
`30/(5sqrt3 - 3sqrt5) xx (5sqrt3 + 3sqrt5)/(5sqrt3 + 3sqrt5)` = `(30 xx 5 xx sqrt3 + 30 xx 3 xx sqrt5)/(5(sqrt3)^2 - (3sqrt3)^2)`
`= (30 xx 5 xx sqrt3 + 30 xx 3 xx sqrt5)/(25 xx 3 - 9 xx 5)`
`= (30 xx 5 xx sqrt3 + 30 xx 3 xx sqrt5)/30`
`= 5sqrt3 + 3sqrt5`
Hence the given expression is simplified with rational denominaor to `5sqrt3 + 3sqrt5`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Rationalise the denominator of the following:
`1/sqrt7`
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.