Advertisements
Advertisements
प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
उत्तर
`(3+sqrt3)(2+sqrt2)` = `3(2+sqrt2)+sqrt3(2+sqrt2)`
Left Distributive law of multiplication over addition
= `(3)(2)+3sqrt2+(sqrt3(2))+(sqrt3)(sqrt2)`
= `6+3sqrt2+2sqrt3+sqrt((3)(2))`
∴ `sqrta sqrtb`
= `sqrt(ab)`
= `6+3sqrt2+2sqrt3+sqrt6`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following
`sqrt2/sqrt5`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Simplify `(7 + 3sqrt5)/(3 + sqrt5) - (7 - 3sqrt5)/(3 - sqrt5)`
The rationalisation factor of \[\sqrt{3}\] is
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Simplify the following expression:
`(sqrt5+sqrt2)^2`
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
`1/(sqrt(9) - sqrt(8))` is equal to ______.
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`